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Experiments on jet flows and jet noise far-field 
spectra and directivity patterns 
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The results of measurements of far-field sound emitted from jets are reported. 
The narrow-band power spectral density of the sound in the far field was measured 
for three jet diameters, three Mach numbers, and five angular positions. The 
intensity distribution of mean-square pressure fluctuation in the far field in 
several wide frequency ranges were also measured. The similarity relations found 
from the experiments are reported. 

1. Introduction 
The problem of jet noise is still of technological interest. I n  addition, it is of 

interest as a problem in fluid dynamics in the class of problems which involve 
the interaction between instability, turbulence and wave emission. Other 
problems of this class are found in meteorology, oceanography and astrophysics. 

Our present understanding of jet noise may be sufficient for ad hoc applica- 
tions in aeronautics, and present methods of noise suppression may be acceptable 
(Lighthill 1961). The problem does, however, remain of interest in the field of 
fluid mechanics. 

Previous experiments on jet noise have been insufficiently precise for assess- 
ment of the validity or relative merit of proposed theories. Very little data exists, 
for example, on the noise emission from jets where both the mean flow field and 
the turbulent field are known. One is in the situation where more is known 
about the emitted sound than is known about the structure of the emitter. 

A theory of a stochastic field can only be proved by experiment either by 
showing that all the assumptions are valid or by showing that the theory correctly 
predicts all the joint statistical measures of the field. A theorywhichyields agood 
approximation to only a few of the structural measures, such as mean-square 
fluctuations and spectral densities for a restricted parameter range, need not 
be physically correct in detail in order to be useful. 

The purpose of the present experiments on jet noise and jet flows was to obtain 
more precise and detailed information about the flow field and the sound emission. 
Extensive precautions were therefore taken in the design of the experimental 
apparatus to insure controlled circumstances. The specific information sought 
was on the dependence and interdependence of the flow field and the emitted 
sound. The turbulent velocity field in a jet is in part universal, in part determined 
by the exit conditions. The relative importance of the universal and the peculiar 
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parts of the turbulent field as sound emitters were sought. The jet formed by a 
fully developed turbulent pipe flow beyond the pipe termination may, for 
example, emit sound which is characterized by the transition from pipe-flow 
turbulence to fully developed jet turbulence, while a laminar but unstable jet 
may emit sound of a single frequency. It is also possible that in some cases the 
process of sound emission cannot be separated from the mechanism of generation 
of turbulence. An example is found in so-called sensitive jets, which can be excited 
into oscillation by an impinging sound field, and which will amplify the sound. 
If one has two adjacent sensitive jets, they may excite one another. Clearly, in 
such a case, it  is not possible to  ignore the effect of sound upon the mechanism of 
generation of turbulence. However, even in this case, the sound field can be 
described in terms of the velocity fluctuations, using, for example, Lighthill’s 
(1954) theory. Before one can apply such a theory, however, the velocity field 
must be known. 

2. Experimental arrangement 
The apparatus usedin the experiments consisted of a flow-producing apparatus, 

an anechoic chamber, sensing elements and data-processing equipment. These 
elements and their characteristics will be described to the extent that is directly 
relevant to the measurements of far-field sound. Other characteristics will be 
mentioned in their proper context in reports on other measurements. 

Anechoic 

, , _ , _ , .  - _ , . , , , . .  - . - . .  

FIGITRE 1. Flow-producing apparatus. 

2.1. Flow-producing apparatus 

Figure 1 shows the flow apparatus. Dry, compressed air enters a muffler- 
settling chamber after having passed through a heater. The air leaves the settling 
chamber through a contraction, ending in a nozzle. Three nozzles of different 
exit diameters but geometrically similar in shape were used. Figure 3 shows 
the 1 in. nozzle. The nozzle exit is in the anechoic chamber. The air leaves the 
chamber through a ‘jet catcher’ as shown in figure 1. 

The settling chamber, made of a heavy cast-iron pipe, had a diameter of 12 in. 
and was lof t .  long. In  the first 2f t .  of the settling chamber high turbulent 
mixing was generated so as to equalize the velocity and temperature of the air 
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after it had passed through the heating elements. The next 6ft. were used to 
reduce the turbulence level. This was done by five sections of steel wool, each 
6 in. thick, held between screens. The flow was then straightened by a honeycomb, 
1 ft. long, made of finned steel tubing. Preceding the 18 in. stilling section were 
three screens of decreasing mesh size. The jet nozzles were fastened at the end 
of the pipe. As a result of more than 1 year spent in eliminating extraneous 

Boundary-layer 
exhaust 

f 

FIGURE 2. The 1 in. nozzle. 

sources of sound and turbulence, the system now gives a flow with an r.m.8. 
turbulent velocity level which cannot be detected using a Shapiro and Edwards 
hot-wire set and tungsten wires of a diameter of lO-*in., no detectable tempera- 
ture fluctuations, very little sound from sources upsteam of the nozzle exit, and 
no detectable effects of nozzle vibration. 

2.2.  Anechoic chamber 

The 8 x 8 x 8 ft. chamber was designed for short wavelengths of sound. The walls, 
ceiling and floor are covered by two layers of 1 in. thick fibreglass mats with the 
outer layer wavy, as shown in figure 1. The upstream wall, on which little sound 
will impinge, is a curtain of heavy cloth. 

2.3. The microphone 

A Bruel and Kjaer condenser microphone was used for all the far-field measure- 
ments. Its face diameter is & in., its frequency response flat for axially impinging 
sound from 20 to 35,000 c/s. The r.m.9. signal-to-noise ratio was below 5 x 10-3 
in all the runs. The microphone was periodically calibrated using the ‘piston 
phone’ supplied by the manufacturer. The sensitity was found to remain con- 
stant ( s  = 1-03 x 10-3V/~bar). 
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The microphone was supported by a horizontal boom which could rotate about 
a vertical axis through the centre of the nozzle exit plane. The microphone was 
hung from the boom using loosely spun cotton twine. The maximum inaccuracy 
in microphone position was &in. 

Cathode 
follower h4icrophone 

2.4. Dutu processing system 
For the far-field sound measurements, the system shown in figure 3 was used. 
As the figure shows, the power spectrum recorder consisted of a Doniier (model 
no. 2 102) wave-form analyser and a Leeds and Northrup Speedomax pen recorder. 
The power band-pass of the wave-form analyser was found to be 25 c/s, measured 

True rms 
meter Ampiiiier - - 

Filter 

analyser Q 
Recorder 

FIGURE 3. System for far-field sound measurement. 

as the width of an equivalent rectangular spectral window. The paper-drive 
mechanism of the pen recorder was mechanically linked to the frequency dial 
of the wave-form analyser. The electric output of the wave-form analyser was 
fed to the recording pen, which plotted the square root of the power spectral 
density of the wave-form analyser input. A built-in calibration was used to 
check for accidental drift of the microphone, amplifier, analyser and recording 
during a run. 

In  addition, the r.m.s. signal from the microphone was read on a true r.m.s. 
meter, and a Panoramic (model SB15a) wave-form analyser was used for 
monitoring the complete spectrum. 

3. Elimination of parasitic sources of noise and turbulence 
The procedure used to identify and eliminate parasitic noise sources were 

based on the contention that the only physical variables of interest were those 
describing the nozzle geometry, the mean-flow parameters at  the nozzle exit, the 
fluctuations in the free jet and the sound field and the microphone location. There- 
fore, data which do not depend upon any other variables can be stated as func- 
tional relationships of non-dimensional variables formed from the admissible 
physical variables. A variation of the dimensional parameters which does not 
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affect the values of the dimensionless quantities should not change the functional 
relationship between the latter. 

However, if parasitic variables are present and affect the phenomenon under 
investigation to a discernible extent, such a variable must be included in order 
to state the result in terms of dimensionless variables. This is well known to 
experimenters, and usually it is not very difficult to design and modify an 
experiment in fluid dynamics so that no parasitic variables affect the results. 
For the experiments described in this paper, it proved difficult indeed to eliminate 
unwanted effects. First, a radiative phenomenon such as sound can transmit 
energy over large distances and focus it so that a parasitic effect can be felt far 
away from its source. Also, distant boundaries must neither radiate nor reflect 
sound. Also, the sound emission from a jet contains only a small fraction of the 
jet energy. A small change in the jet flow which just happens to be an efficient 
sound emitter can therefore upset the sound field significantly. Another difficulty 
was our insistence upon similarity in narrow band-pass spectra. An effect which 
does not show up in the mean square or even in averages over broad frequency 
bands may show up very well in a spectrum with sharp frequency resolution. 

Among the phenomena which gave parasitic effects were: sound scattering 
from microphone supports and cables, unstable flow in the air outlet from the 
anechoic chamber and amplifier microphonics. We believe that we have elimi- 
nated all the important parasitic effects, and that our power spectral densities 
are correct within 10 yo. 

4. Experimental results 
The results which will be reported in this paper consist of (1) the Mach number 

profiles of the mean flows, which are included here for purposes of reference, and 
will be further discussed in a future paper; (ii) the root-mean-square of the 
pressure fluctuations in the far field as a function of microphone position and the 
jet-flow parameters; (iii) the power-spectral densities of the far-field pressure 
fluctuations as functions of microphone location and jet-flow parameters. 

4.1. Mean-$ow pro$les 

Typical mean-flow profiles are shown in figures 4 and 5 for two jet diameters. 
The quantities plotted are Mach number, M ( x ,  y), us 7 = 1 - (2y/D)/x, x being 
the downstream distance from the nozzle exit plane and y the radial distance 
from the jet centre-line. The location of the jet centre-line was determined by 
measurement of stagnation-pressure profiles. Note the longer laminar core of 
the smaller jet. A complete report on the mean-flow profiles has been given by 
Kolpin ( 1962). 

4.2. Root-mean-square pressure $uctuations in the fur jield 

From dimensional analysis, the root-mean-square pressure fluctuation 13 in 
the far field of a circular jet must satisfy a relation of the form 

10 
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where K is a dimensionless constant, p a density, a the speed of sound at the 
nozzle exit, M the Mach number, D the nozzle diameter, r the distance from the 
centre of the nozzle exit plane to the microphone, 6' the angle between r and 
the axis of symmetry of the jet, U = aM, Re = U D / p  and p is the kinematic 

I 

viscosity. 
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FIGURE 4. Moan flow. 

Confining the attention to the far field of emitted sound, where, by definition, 
ij varies as the inverse of the distance, one obtains 

A = D - G(/W, Re, 6'). 
Kpa2 Y 

The function G has to be determined from experiments. The experiments were 
designed to measure the dependence of G upon M and 6' directly, and to separate 
the dependence of G upon M and Re as far as possible by investigating the sound 
emission from jets of different diameters. 

The data obtained satisfy the far-field relationship within a few percent for 
D/r > 30 for frequencies f above f D / a  = 
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4.3. Directivity of far-Jield sound 
All the data were obtained in one plane passing through the jet axis. Measure- 
ments elsewhere in the field showed that the sound field was axisymmetric within 

Figure 6 shows contours of constant p in the (?-,@-plane, for M = 0.8 and 
M = 0.9 and D = l in .  The numbers marked on the contours are the r.m.s. 
of the signal in millivolts. Note the corrected value for ill = 0.9. The figure 
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FIGURE 5. Mean flow. 

shows a single lobe in the directivity pattern, and that 17 is not quite proportional 
to M 4  as suggested by Lighthill as a first approximation, while the variation of 
j3 with 0 is almost independent of Mach number. The single lobe emission pattern 
is different from that obtained by previous investigators. The reason is that in 
our measurements low values of dimensionless frequency could be included. For 
large jet diameters, the lower frequencies are easily masked by the effects of 
gust upon the microphone, usually classified as 'pseudosound' and filtered out. 
The measurement of 17 presented in figure 6 extends from fDlU = to fD /U = 5 .  
This point is demonstrated in figure 7, which shows contours of constant 17 

19-2 
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when frequencies below fDlU = 2 have been excluded by filtering the signal. 
The familiar directivity of the sound field is apparent, the maximum being near 
8 = 45". 

The corresponding distribution of low frequency emission is shown in figure 8, 
where only frequencies in range 0 < fD/U < 0.5 have been included. These low 
frequencies seem to be emitted most intensely within the jet itself, where measure- 
ments are very difficult, if not impossible. 

90" 

FIGURE 6. Contours of constant f3 in field, jet axis a t  19 = 0"; M = 0.8 and 0.9; 
D = 1 in. ; d in mV, at M = 0.9, E --. At M = 0.8, (0,9/0.8)4 Z - - - -. 

Figures 7 and 8 indicate that the large and the small eddies within the jet may 
differ in their sound production, and that one may be able to make a distinction 
between them as sound emitters. 

The directional distribution of sound intensity appears to be almost indepen- 
dent of Mach number. Figure 9 gives further evidence in this direction, showing 
the dependence of j3 upon 8 for three different values of M .  The curves have the 
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FIGURE 7.  Contours of constant Q for high for low 
frequencies only. M = 0.8; L) = 1 in.; frequencies only. M = 0 . 8 ;  D = 1 in.; 
fUld > 2 ;  r.m.s. in mV. 

FIGURE 8. Contours of constant 

f U j d  > 0.5; r.m.s. in mV. 

120 

90 

6 
fi 60 
!Q 

30 

0 
b0 1 00 

FIGURE 9. Variation of r.m.s. microphone output p with 0 and M .  
(Independent measurement for these shown in figure 8.) 
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same shape for B > 40". The variation of $5 with diameter is shown in figure 10 
for M = 0.8. The ordinates have been arbitrarily scaled so as to coincide for 
6 = 50". The correspondence is quite good, and the directivity is approximately 

70 

50 

10 

0 

e 
FIGURE 10. Variation of r.1n.s. microphone output with jet diameter and 

0 for M = 0.8, scaled so as to make data coincide at  8 = 60". 

FIGURE 11. 
D =  

60 
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'0 20" 40" 60" 80" loo" 120" 

e 
Variation of high frequency sound with 8 and iM for S > 2.  r = 
1 in., independent measurement ; f0+ is shown measured in kc/s. 

3 ft., 

independent of jet diameter for a given Mach number, but does depend strongly 
upon frequency and to a lesser extent upon Mach number. 

The results of a separate experiment are shown in figure 11 where the meaii- 
squares of frequencies above fD/U = 2 are included, lower frequencies having 
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been filtered out. For high frequencies, the directivity of sound emission is 
independent of Mach number and Reynolds number. This suggests that the 
function G(M, Re, 8) may conveniently be written in the form 

G(M,  Re, 0) = F ( 0 )  ilfn(8)Gl(M, Re, 8 )  

for the high frequency portion of the sound field, where G l ( M ,  Re, 0) is a slowly 
varying function of M and 0. 

L 
300 40' 50' 

- 

700 800 < ? 

e 
FIGURE 12. Far field p vs 8 a t  selected frequencies for lil = 0.8, D = 1 in., r = 2 ft. 
(independent experiment from other results shown in this paper). f is measured in lrc/s. 

A firmer indication of the dependence of directionality upon frequency is 
shown in figure 12 which is the result of measuring the root-mean-square of a 
narrow frequency band as a function of 6' for a fixed M and D. The power band- 
width for these measurements was 25 CIS. 

The angle of maximum intensity decreases with frequency, showing that 
the spectra and directivity distributions of high and low frequencies are different 
and there is a smooth transition between them. 

4.4. Dependence upon Mach number and Reynolds number 
To find the Mach number dependence of the mean-square intensity of sound in 
the far field, the resu1t.s of a series of measurements of @ was plotted against M 
on log-log paper and the value of n(B) determined on the presumption that 

__ 1 7 D  = - G ( M ,  Re, 0) N Mn@)F,(Re). 
Kpa2 r 
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A sample plot is shown in figure 13. Measurements were made for M = 0.6, 0.8 
and 0.9. 

It was found that n(0 )  is independent of M ,  and figure 14 shows the variation 
of n(0)  for three different jet diameters. n(8 )  varies between 4.4 and 3.6. Lighthill 
suggests that the average value of n(8)  should be four, yielding (@ - M8. This 
estimate appears to be high. 

0.2 0.5 0.10 

134 

FIGURE 13. Variation of microphone output 
with M and 8. Independent experiment. 

FIGURE 14. Variation in Mach number 
exponent with diameter D and 19 for 
best fit of formula, p - Ma. 

A most nayve attempt at  finding the variation of j3 with Reynolds number is 
to  try an approximation of the type 

j3 .- = (UD/v)". 

Taking account of the dependence upon M already found, one can then set 

The data then shows m to be between one and three, m decreasing with increasing 
nozzle diameter. This result is due to the fact that transition moves from the 
free shear layer for the smaller jet at  low Mach number to the nozzle boundary 
layer for the larger jets and higher Mach numbers. One can only conclude from 
the present measurements that whether transition takes place in the free shear 
layer or not has an easily discernible effect upon sound emission. 
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5. Power spectrum measurements 

fluctuations are related by 
The power spectral density @(f )  and the mean square f j 2  of the pressure 

p2 = Jom @( f )  df. (5.1) 

0.20 1 0.10 c 

S = fD/U 

FIGURE 1.3. Far-field sound spectra showing departures from far-field relationships 
for different values of ilf and 0; D = 1 in. The points are shown in the following table: 

R,!D 0 30" 60" 90" 

ill = 0.895 n M = 0.893 0 M = 0.893 

d M = 0.622 6 M = 0.623 A M = 0.623 

0 M = 0-895 i I1  = 0-898 n M = 0.898 
36 0 M = 0.798 0 A4' = 0.800 0 M = 0.785 

A M = 0.622 A -M = 0.623 A M = 0.623 

24 6 M = 0.795 d M = 0.800 

In  the far field, $2 must vary as the inverse square of the distance r ,  and from 
dimensional considerations one finds that @2 must be expressible in the form 

172 = (+pa2J12)2 (D2/r2)  ( 5 . 2 )  

where #(S) is a dimensionless function of Strouhal number X = fD/U, and 
where a and N are measured in the jet at  the nozzle exit. 

Comparing equations (5.1) and (5 .2) ,  one finds that $(a) and @(f )  are related 

#(X) may be considered a dimensionless power spectral density. 
Figure 15 shows a number of measured spectra, plotted as # ( S )  vs S on linear 

scales. The figure is included to show the extent to which the far-field relationship 
holds for data obtained at different values of r /D  and to give an impression of the 
experimental error. The spectra shown are for one jet diameter, three values of 
Mach number and at  four angles 0 between r and the jet axis. 
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It is, of course, rather difficult to obtain far-field similarity for small values of 
0 at low frequencies, since the point of observation is not far from the emitter, 
as measured in either wavelengths or emitter extents. Figure 15 confirms this. 

Figure 16 shows thirty spectra which were obtained in the far field. The curves 
shown are drawn through the measured points in order to avoid excessive clutter 
of symbols. The maximum scatter of experimental data obtained at  two distances 
r is less than 10 yo. 

e =goo .---_ ---__ 

, -  

0.30 4 I\ 

8 = 30° 

I I 

0 1 2 3 4 
S = fD/U 

FIGURE 16. Far-field spectra for different 
for two jet diameters. 

D =  1.00 in. - 
Lt=050in. --- 

values of M and 0 

The spectra shown in figure 16 represent for three values of Mach number, 
31 = 0.62, 0.80 and 0.90, five angular positions, 0 = 30°, 40°, 50°, 60" and 90°, 
and two jet diameters, namely D = $in. and D = 1 in., corresponding to Reynolds 
numbers Re = UD/v  of approximately 3M x lo5 and 6M x lo5, respectively. The 
resultsshow that most ofthenoiseisemittedin thefrequencyrange 0.1 < S < 1.0. 
The data also show that Q(X) = 0 for S = 0. This means that either the emitter 
intensity is zero at  zero frequency or that the total equivalent emitter contains 
no simple source. 

The slope of 2/#(S) is finite and appears to be constant near S = 0. The con- 
stant slope portion of 2/q5(S) is less obvious at B = 90" than at  B = 30". 

The emission at higher reduced frequencies appears to be more complicated. 
The variation of # ( S )  with jet diameter, that is Reynolds number, is very 

apparent. This is not due to variations in stagnation temperature, for example. 
Rather, the dependence of # ( S )  upon Reynolds number seems to involve where 
transition from laminar to turbulent flow takes place. Because of the low turbu- 
lence level in the air supply, the boundary layer on the nozzle walls was laminar 
for the smaller diameter ( D  = &in.) nozzle. Thus, transition took place in the 
free shear layer. 
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For the larger nozzle, transition took place in the boundary layer on the nozzle 
wall, but intermittently. An intermittent process involving very high local time 
derivatives may be a very efficient sound emitter. 

For the largest jet diameter, D = 14 in., the boundary layer on the nozzle wall 
was most likely fully turbulent. (No observations were made of the exit flow 
for this particular nozzle.) Preliminary measurements of the noise field from this 
larger nozzle indicate that the dependence of $(S)  upon Re changes from typically 
Q(S) N Re2 in the transitional range to $(S)  N Re when the boundary layer at 
the nozzle exit is fully turbulent. The length of the laminar core of the jet also 
varies with Reynolds number, and will also influence the effectiveness of the jet 
as a sound emitter. The data which show the details of the flow in the near field 
and within the jet will be published in a later paper. 

0.2 

0.1 
0.1 0.5 1.0 5.0 

S = f J D U  

FIGURE 17. Similarity of spectra in directions well away from the jet asis. 

Figure 17  shows that it may be possible to present the far field well away from 
the jet axis as a universal function of reduced frequency S times a function of M 
and 0 only. 

Figure 1s shows that such a simple approximation is not possible for 0 less 
than 40°, but the figure suggests that for constant values of functional combina- 
tions of M and 0, the dependence upon reduced frequency S may be the same, 
so that $(S7 M ,  Re, 0) has the form 

This suggests that the effect of convection of sound emitters and sound by the 
mean flow of the jet is most strongly felt in the far field near the jet axis, a con- 
clusion which is eminently reasonable, if not trivial. One fact is however interest- 
ing. We were unable to find any upstream intensity lobes, i.e. maxima of inten- 
sity for 90" < 0 < 180". This is in direct disagreement with previous experiments 



300 Erik Mollo-Christensen, Marc A .  Kolpin and John R. Martuccelli 

(Fitzpatrick 1952; Lassiter 1952; Merle 1957; Franken 1958; Gerrard 1956) and 
with Lighthill’s predictions (Lighthill 1954). 

We could have obtained such upstream intensity lobes by letting the jet im- 
pinge on a solid object, or by mounting a sound reflector somewhere in the down- 
stream sound field. This would, however, be a different experiment, perhaps 
already performed inadvertently by others. 

s = fD/U 

FIGURE 18. Similarity in spcctra near the jet axis. 

6. Conclusions 
The results of the present measurements show no important discrepancies 

with previously obtained data, although some of the more tenuous conclusions 
drawn on the basis of previous data may be questioned. 

There appear to be at  least two distinguishable types of emitted sound, one 
dominating at  very low frequencies and another dominating at high frequencies. 
A relation which gives a smooth interpolation between these asymptotic ranges 
would prove useful, if one could be invented. 

The emitted sound depends upon the structure of the boundary layer at  the 
nozzle exit, more strongly so when the boundary layer is not fully turbulent or 
very thin. This is supported by previous experiments (Mollo-Christensen & 
Narasimha 1960). 

The process of generation of turbulence may determine the structure of the 
sound field two ways: directly, by sound emission from the transition process in 
the jet, and indirectly, by sound emitted from the turbulence convected down- 
stream. 

The near-field pressure covariances give an indication of this, and will be 
reported in a later paper. The length of the mixing region of a jet also affects 
sound emission, being itself dependent upon the efflux boundary layer. 

These data suggest that some slight modifications of current thinking on the 
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subject of jet noise may be necessary. This will be further illustrated by the 
results of near-field and turbulence measurements, which will be reported in 
future papers. 

This work was supported by the National Aeronautics and Space Administra- 
tion under Grant NsG 31-60. The able assistance of Mr Fred Merlis in building, 
maintaining and keeping watch on the electronic equipment contributed 
significantly to the results. 
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